### JLab @ Higher Energies

- Began with evolutionary upgrades of the CEBAF accelerator energy:
  - 4.0 GeV (spec) to 5.5 GeV (now)
  - on track for 6 GeV this year w/
    January shutdown projects:
     NL/SL cryomodule "shuffle"
     20<sup>th</sup> cryomodule added to SL
- Upgrade to 12 GeV, 100% DF (2001-07)
  - "Natural" extension, beautifully matched to the next generation of experiments
  - Excellent scientific justification (to be documented by the white paper developed following this workshop)

### 12 GeV Upgrade

Tripling CEBAF's design energy opens many new scientific opportunities and provides a broad, qualitative enhancement of the present program:

### **Key New Physics:**

- Meson spectroscopy
   (defines E<sub>max</sub> and requires the addition of "Hall D")
- Extend accessible Deep Inelastic Scattering regime to x→1 for a large range of Q<sup>2</sup> (requires the SHMS in Hall C)
- Spin, Hadron, and Nuclear Microscopy (requires the CLAS upgrade, ancillary detectors in Hall A)

### Higher energies ⇒ better experiments addressing the current physics problems:

- Enhanced counting rates (σ~E²)
- Dramatically improved experiment design flexibility & signal-to-noise ratio

### Experimental Equipment for CEBAF @ 12 GeV

- Extensive effort with substantial JLab user community involvement to develop the plan:
  - Hall collaboration meetings & design studies
  - 2 Summer Workshops
  - "Hall D" collaboration activities
  - this workshop and the "white paper" activities to follow
- The broad outlines of the plan are clear
- Critical effort for this workshop and related activities:
  - Verify the match between the accelerator and research equipment characteristics and the requirements of key experiments motivating the facility
  - Document the key experiments for presentation to the broader community
- To be reviewed by the PAC following the model used for the "base equipment"

## CEBAF @ 12 GEV, 5 1/2 PASS

- Hall A Retain HRS pair Add Ancillary Detectors
- Hall B Rebuild Region I Detector for improved coverage @ higher multiplicity
- Hall C Add SHMS/detecte SOS
   to support high Q<sup>2</sup>, high luminosity

5 New Cryomodules

> Hall D - New photon-only Hall @ 5 1/2 passes New 4\pi hermetic detector optimized for Meson Spectroscopy 20 Cryo



Accelerator down ~ I year for Installation and Commissioning

### Meson Spectroscopy drives: $E_{max} \rightarrow 12 \text{ GeV and}$ the need for Hall D

- Photoproduce and identify mesons with masses between 1 and 2.5 GeV
  - ⇒ need Eγ from 5 to ≥ 9 GeV
  - ⇒ polarization essential
- Tagged coherent bremsstrahlung the best approach at JLab energies and currents
- Optimization of coherent peak and polarization requires
  - tight collimation
  - E $\gamma \sim E_0/2$ 
    - acceptable tradeoffs up to  $E\gamma \sim \frac{34}{6}$
    - ⇒ need 12 GeV electron beam
- Cost optimization and distance needed to match collimation w/ beam emittance
  - $\Rightarrow$  5½ passes, Hall D

### Tagging efficiency







HALL D LAYOUT WITH 125 M BEAM CONDITIONING FROM TANGENT POINT

# Photoproduction of Unusual Mesons





### Anticipated measured mass distribution of 4 produced resonances in the reaction $\gamma p \rightarrow Xp$



1<sup>st</sup> year of operation at 10% of the ultimate luminosity should provide 10x the existing world's data set on meson spectroscopy

### The Hall D Collaboration

- 80 Physicists from 25 institutions (A. Dzierbia, spokesman)
- 8 Workshops since 7/97 at 6 Institutions
- Letter of Intent presented to PAC15, 1/99
- Draft Design Report Completed
- Reviewed by an ad hoc PAC subcommittee 12/6-7/99.; Formal report pending, but closeout noted:
  - the project is well suited for definitive searches for exotic states that are required according to our current understanding of QCD
  - JLab has unique capabilities for this physics
  - The basic approach of the collaboration is sound
  - R&D is needed

### Hall C

- Focus remains high luminosity, high Q<sup>2</sup> physics
- Retain capability for "one of a kind" setup experiments
   (t<sub>20</sub>, G<sup>E</sup><sub>n</sub>, G0, ...)
- Build Super High Momentum Spectrometer (SHMS) matched to 11 GeV, high luminosity, moderate resolution (10<sup>-3</sup>) experiments
- HMS becomes lower energy spectrometer of coincidence pair



### SHMS Base Design

| Characteristic                 | SHMS             | SHMS<br>"lite"*  |
|--------------------------------|------------------|------------------|
| Configuration                  | QQD              | QQD              |
| P <sub>max</sub> (GeV/c)       | 12               | 6                |
| Solid Angle (msr)              | 1.7-3.0          | 1.7-3.0          |
| In-plane (mr)                  | 13               | 13               |
| Out-of-plane (mr)              | 42               | 42               |
| Minimum Scattering Angle (deg) | 5.5              | 5.5              |
| Bend Angle (deg)               | 18.9             | 18.3             |
| D (cm/%)                       | 1.852            | 1.765            |
| D/M (cm/%)                     | 3.12             | 3.12             |
| Acceptance (%)                 | ±10              | ±10              |
| Focal Plane Angle (deg)        | 4.69             | 5.07             |
| Resolution:                    |                  |                  |
| Momentum                       | 10 <sup>-3</sup> | 10 <sup>-3</sup> |
| In-plane angle (mr)            | 0.9              | 0.9              |
| Out-of-plane angle (mr)        | 3.0              | 3.0              |
| Dipole Power (MW)              | 0.03             | 0.7              |

<sup>\*</sup> Uses SLAC B203 dipole

### Hall B

- Improve CLAS instrumentation to realize the full potential of the toroidal SC coil/geometry
- Extend ability to identify exclusive final states in e and γ - induced reactions to higher energies
- Requires a strategy change: full detection of final hadronic state instead of missing mass technique
- Rebuild inner detector package:
  - full coverage tracking and PID
  - complement outer calorimeters by calorimeter strips in front of the coils
  - develop new magnetic shield

### Angular Distribution of $\pi^+$ CLAS 2.4 GeV Data





### Hall B Detector Development

- Ring Imaging Cerenkov
  - prototyping at RPI using multi-anode PMTs
- Inner Calorimeter
  - NSU evaluating a 5x5 lead-tungstate array on loan from Giessen; beam tests 11/99, results under study
  - 3 prototypes under development at ITEP (2 vendors of lead tungstate, one Pb-scintillator sandwich)
- Work needed on inner tracking and magnetic shielding

### Hall A

- Retain HRS pair to take advantage of their excellent momentum and angular resolution capabilities
- Enhance research capability of the hall with experiment-driven equipment additions:
  - septa for forward angle capability
  - a photon calorimeter for real and virtual Compton scattering
    - •
    - •
    - •

### Photon Calorimeter

 Stage I: 1 x 1 m<sup>2</sup> lead glass (under assembly) for real Compton scattering experiments



 Stage II: 2 x 2 m<sup>2</sup> "PbWO<sub>4</sub>" for DVCS, electron detection, ...

### 20 Cryomodules - Add 5 Cryomodules Add 5 Cryomodules<sub>(</sub> CEBAF @ 12 GEV, 5 1/2 PASS 20 Cryomodules Replace/rework existing ones as needed, < 6 Add a new hall (Hall D) @ highest energy Add 10th arc for 5.5 pass acceleration Upgrade arcs (mostly power supplies Increase cryo capacity to 10 kW and spreader/recombiners) 65+ MV, high Q cryomodules Install 10 in empty slots Accelerator down ~ I year for Installation (photons only)

Drawings/leemann/CEBAF@12Gev 5.5

and Commissioning

### **Beam Characteristics**

- 100% Duty Factor
- Excellent Beam Characteristics:
  - ~5 nm emittance
  - 1-2 x 10<sup>-4</sup>  $\delta$ E/E
- 1 MW total beam power
   ⇒ ≥ 75-90µA total available @ 11 GeV
- Multiple Beam Capability:
  - Hall D must get highest energy available (generally 5½ pass)
  - Halls A, B, and C each get unique energies from 1-5 pass
  - So, for example, if the linacs were operated at 1.1 GeV each, then

Hall D =  $5 \frac{1}{2} \times 2.2 = 12.1 \text{ GeV}$ 

Halls A, B, C choose from among 2.2, 4.4, 6.6, 8.8, and 11.0 GeV

### 12 GeV Upgrade Beam Parameters

|                         | CEBAF<br>@ 4 GeV     | CEBAF<br>@ 12 GeV   |
|-------------------------|----------------------|---------------------|
| 5-pass (Halls A, B, &C) |                      |                     |
| Energy (GeV)            | 4.0                  | 11.0                |
| Energy spread (%)       | 0.01                 | 0.023               |
| x-emittance (m)         | < 1x10 <sup>-9</sup> | 7x10 <sup>-9</sup>  |
| y-emittance (m)         | < 1x10 <sup>-9</sup> | 1x10 <sup>-9</sup>  |
| 5½ - pass (Hall D only) |                      |                     |
| Energy (GeV)            | n/a                  | 12.1                |
| Energy spread (%)       | n/a                  | 0.026               |
| x-emittance (m)         | n/a                  | 10x10 <sup>-9</sup> |
| y-emittance (m)         | n/a                  | 2x10 <sup>-9</sup>  |

### Key questions for this workshop and related activities:

- Do these values meet the needs of the experimental program?
- Can we live with a worse energy spread? (5x10<sup>-4</sup>?; 10<sup>-3</sup>?)

### **Baseline 12 GeV optics**









CEBAF EAST ARC MAGNETS

## BB110 Measurement on Pickup Call Stand

Fletd Integral vs Current



Han Every 50 Commerted - B. Per - 20705 - 1:0 File - J. Hen

### Prototype BB with added H-Steel.



### Saturation versus Current

AmpFac vs. Current



ARC 5.5 PASS 12 GeV UPGRADE PLAN

10-Sep-99

BASELINE

| 15:56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |   |         |             |            |       |       |        |                 |        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|---------|-------------|------------|-------|-------|--------|-----------------|--------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |   | CURRENT | <b>}-</b> - |            |       |       | H-MAGN | H - MAGNET PLAN |        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |   |         | €0          | \ <b>0</b> |       |       |        | 12 (            | 12 GeV | SAT.  | TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ARC #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MAG  | Ē | ENERGY  | TESLA       | AMPS       | MAG   | ٤     | ENERGY | TESLA           | AMPS   | %     | AMPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| And the second s | 1-82 | - | 0.668   | 0.4<br>4    | 222        |       |       |        |                 |        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-BR | ~ | 1.268   | 0.41        | 206        |       |       |        |                 |        |       | A Section of the Control of the Cont |
| က                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-BE | 7 | 1.868   | 0.61        | 297        | HEY   | ~     |        |                 |        | 11.11 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-BB | 4 | 2.468   | 0.40        | 200        |       |       |        |                 |        |       | the state of the s |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-BB | 4 | 3.068   | 09.0        | 249        |       | •     |        |                 |        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ₩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-88 | 4 | 3.668   | 0.60        | 299        | Į     | •     |        |                 |        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-BA | 9 | 4.268   | 0.47        | 231        |       |       |        |                 |        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-BA | 9 | 4.868   | 0.63        | 264        | 2-BA  | •     |        |                 |        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-BA | 9 | 5.468   | 86          | 299        | 2-86H | •     |        |                 |        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |   |         |             |            | 248   | •     |        | 8               |        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |   |         |             |            |       |       |        |                 |        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ∢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-BA | က | 6.068   | 0.60        | 252        |       | A. C. |        |                 |        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |   |         |             |            |       | 9     |        |                 |        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

252 30\$ 252 0.60 0.63 0.50 6.068 NO CHANGE 1-84 1-86 1-84 **4 10** 0

BASE LINE CHANGE

### East Spreader



Change in 'Z' only from present installation

NEW magnets.

### 8x FCEL CASITY ASSEMBLY NEW DESIGN CONCEPT!

56 cavities/cryomodule



3 CRYDMODULE:

40 cavities/cryomodule





Prototype Seven-Cell Cavity.

Results of the Test of the First Seven-Cell Prototype.



### Summary

- CEBAF@12 GeV opens exciting new physics opportunities
- Substantial work has been done to define and refine the accelerator upgrade:
  - it is straightforward
  - SRF cryomodule R&D essential to minimize cost is progressing well
- The experimental equipment required must be defined to a similar level soon
- The compelling physics case we see for the upgrade must be documented and sold to our colleagues prior to the next NSAC long range plan
  - Detailed studies, 3-star experiments, and the white paper are essential!
- Go to it!!!!